The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  X X^2+2  X  0  X X^2+2  X  0  X X^2+2  X  2  X X^2  X  X  X  X  X  X  1  X  X  1  X  X  X  X  X  X  X  1  1
 0  X X^2+2 X^2+X  0 X^2+X X^2+2 X+2  0 X^2+X X^2+2 X+2  0 X^2+X X^2+2  X  2 X^2+X+2 X^2  X  2 X^2+X+2 X^2 X+2  2 X^2+X+2 X^2  X  2 X^2+X+2 X^2 X+2 X^2+X  X X+2  X X^2+X  X X+2  X X^2+X  X X+2  X X^2+X+2  X  X  X  0 X^2+2  0 X^2+2  0 X^2+2  0 X^2  2  2  2 X^2 X^2+2  2 X^2  2 X^2  0 X^2+X
 0  0  2  0  0  2  2  2  2  0  0  2  2  2  0  0  2  2  2  2  0  0  0  0  2  2  2  2  0  0  0  0  0  0  2  2  0  0  2  2  2  2  0  0  2  2  0  0  0  2  2  0  2  2  0  2  2  2  0  2  0  0  0  2  0  0  0
 0  0  0  2  2  2  2  0  2  0  0  2  0  0  2  2  0  0  2  2  2  2  0  0  2  2  0  0  0  0  2  2  0  2  2  0  2  0  0  2  2  0  0  2  0  2  2  0  2  2  0  2  2  0  0  0  2  0  2  2  0  0  2  0  0  2  0

generates a code of length 67 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 65.

Homogenous weight enumerator: w(x)=1x^0+142x^65+64x^66+122x^67+22x^68+146x^69+4x^70+6x^71+1x^72+4x^82

The gray image is a code over GF(2) with n=536, k=9 and d=260.
This code was found by Heurico 1.16 in 45.7 seconds.